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Abstract. The steady states of a combustion model, derived in a previous paper, were shown to have critical points 
(turning points in the bifurcation diagram) for certain ranges of parameter values. Here attention is fixed on the 
heat release parameter A and the time evolution for the solution for values of A just above its critical value A(~ 0 
is discussed. It is shown that the solution develops a three-stage structure, with the solution both approaching and 
leaving the critical point on a relatively short time scale. However, the majority of the time is spent in moving 
slowly past the critical point, on an O((A - ,k(el)) -1/2) time scale. The solution finally attains its values on the 
upper solution branch, except in the special case of the exponential approximation and when reactant consumption 
is neglected. Here the temperature develops a singularity at a finite time tB, of O(log(tB - t)), though the fluid 
velocity remains finite at tn. 

I. Introduction 

In a previous paper [1] (part I of this series) we derived a model for the free convection 
boundary-layer flow near a forward stagnation point in which the heat input is generated by a 
reaction on the surface of a body. We took the reaction to be a single, first order exothermic 
one governed by Arrhenius kinetics. This resulted in equations for F(y , t), O(y, t) and a(y, t), 
the dimensionless stream function, temperature and reactant concentration respectively, in the 
form 

Oy 3 + 0 + Oy 2 - \ Oy / - OyOt ' (la) 

1 020 fO0 O0 
-~ OV "---~ + ~ = O--t' (lb) 

1 02a fOa = Oa 
s~ Oy ----~ + Oy O--i" (lc) 

Here V measures distance normal to the body surface and t is time (both dimensionless) and a 
and Se are the Prandtl and Schmidt numbers respectively. The initial and boundary conditions 
to be satisfied are 

f : O, Of O0 _ 
O--V = O, Oy )~aexp(O/1 + cO), 

Oa 
O---y = a)~aexp(O/1 + cO) on y = O(t > O) (2a) 
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Fig. 1. Graphs showing how the wall temperature 8(0, t) evolves with t as A is increased. Here A = 0.18, 0.185, 
0.19, 0.21 (with e = 0.0, a = 0.1, o, = ,-.¢c = 1.0). 

o/ 
- -  - ~  O, 0 - ~  O, a ~ 1 as y ~ oo  (t  > 0 ) ,  (2b)  
Oy 

f = 0 ,  0 = 0 ,  a = l  at t = 0 ,  ( y > 0 ) .  (2c) 

The dimensionless parameters A, e and a are the measures of the heat released by the reaction, 
the activation energy and the rate of reactant consumption respectively and are as defined in 
part I as is a detailed derivation of the model. 

In part I we considered the steady state solutions to equations (1, 2) in some detail showing 
that there are parameter ranges over which multiple solutions are possible (see the comment 
at the end of this section). The question that then arises is how does the solution evolve from 

the cold initial state, given by (2c) particularly as A is increased through A~ 1), its value at the 
lower critical point. This is illustrated in Fig. 1 where we show the time development of the 
solution for a range of values of A (with e = 0.0, a = 0.1, cr = Sc = 1.0). For the values 

of A < A(c l) = 0.1840, in this case, 0(0, t) approaches the corresponding value on the lower 
steady state branch. The time for this stationary state to be reached increases as A gets closer 

to A(1). For values of A > A! 1) there is no longer a steady state solution on the lower solution 
branch and the larger values on the upper solution branch are now the appropriate large time 
limit. Figure 1 shows that 0(0, t) does, in fact, approach these solutions as t --+ oo, with time 

taken to reach them getting progressively larger as A -+ A~ 1) from above. 
It is this latter aspect that we address in this paper, namely the so-called 'times to ignition' 

close to criticality. This problem arises generally in combustion and has been considered for 
somewhat different models by, for example, Boddington et al. [2, 3], Gray and Kordylewski 
[4] and Gray and Merkin [5]. These previous studies suggest that the time to ignition should 

increase, in our notation, like (A - ,~(cl)) -1/2 as A ~ /~(1); we find that this is the case in our 
boundary-layer model. 

In all cases the final configuration of the system is the solution on the upper branch when 

A > A (1). The only exception is when both a = 0 and e = 0 as now there is no upper branch 
of solutions [1]. In this case we find that the solution has a finite time blowup at t = tn  (say) 
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with the wall temperature becoming infinite, of O(log(1/tB -- t)), t --4 tB, though the fluid 
velocity remains finite at tB. 

Before proceeding with our discussion, we must mention that, since part I went to press, 
Professor A. Linan has pointed out to us that the bifurcation diagrams described in [1] can be 
obtained in a much simpler fashion. The details of this approach are given in the Appendix, 
which is due to him. 

2. Solution of the initial value problem 

We start our discussion of behaviour of initial-value problem (1, 2) close to criticality by 
taking 

,~ = ,~!~) + 6, 0 < (f ~< 1. (3) 

We will find that there are two time stages which we have to consider in detail. There is 
an initial stage, where t is of O(1), and a further stage where t is of O((f-U2). We start by 
considering the initial development. 

(1) INITIAL STAGE, t OF 0(1) 

We look for a solution by expanding 

f ( y , t ;~ )  = fo(y, t)  + ~Fl(y, t)  + . . .  

O(y,t;5) = Oo(y,t) + 5Hl(y , t )  + " "  i " 

a(y, t; 5) = ao(y, t) + 5Al (y, t) + - . .  

(4) 

The equations satisfied by the leading terms (f0, 00, a0) are essentially equations (1), with 
boundary conditions (2a) modified appropriately. 

Now, for the values of A < A~ l), the solution of initial-value problem (1, 2) approaches the 
appropriate steady state solution on the lower branch, with the approach to this steady state 
being through exponentially small terms, of O(e-Tt), '7 is smallest eigenvalue and is real. 

The existence of a critical point at A = A~ l) corresponds to saddle-node bifurcation and thus 

to the eigenvalue 3' changing sign, with 3' being zero at A = ),!0. Consequently, the leading 
order solution (fo, 0o, ao) approaches the corresponding steady state (fc(Y), Oc(y), at(y)) at 
the critical point with algebraic decay in t. In fact, we find that to obtain a consistent solution 
this decay must be 0 ( t-r) .  More precisely, we have 

fo(v,t) = A(v) + t-'fl(y)+t-2i2(v)+... ] 

O0(y,t) =Oc(y) w t - l O l ( y ) + t - 2 0 2 ( y ) + ' "  / (5) 

a o ( y  , t )  = a t ( y )  -Jr" t - la l  (y) + t-2a2(y) -{- • • • 

for t large. 
At O ( t -  I ) we obtain a linear homogeneous system which has a nontrivial solution. In fact, 

it was the condition that this system had a nontrivial solution that was used previously in [1 ] 

to determine the critical point )~0). However, the solution at this stage is determined only to 
within a constant multiple, with then, from [1], 

f l = Kofe, O~ = KoOe, al = Koae (6) 
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in terms of the eigenfunctions 

fe = Yf~c + re, Oe = y01c + 40c, ae = yale + 4ac - 4 

for any constant Ko. 
The equations at O(t -2) are, on using (6), 

f~t! + 02 _{_ f c f~ t  t t tt - 2" - t2  t - 2fcf2 + fc f2 = K()(Je - fe]~') - Kof'e, (7a) 

2 ! ZoO, + ho~ + f2o" = K ~ A 0 .  - KoO., 
G 

(7b) 

l tt t 2 t 
ff~ca2 + fcd2 + fza c = K~fea e - Koae, (7c) 

subject to the usual boundary conditions and 

0c 
0~ = -A~')exp (1 q:e0c ) 

X a2 + (1 + e0c) 2 + ae 1 + eOc) 2 + 

OC. 

x a:  + (1 + 60c) 2 + ac 1 + e0c) a + 

KZO2e(1 - 2 e - -  2e20e ~ ] 

(1 +eOc)' ] ] '  

K~O2(1 - - 2 e - -  2e20e ~ ] 
(1 +  oo)' }] 

(7d) 

o n y = 0 .  
To obtain a numerical solution of equations (7) we first construct two particular integrals 

(Fa, Ha, Aa) and (Fb, Hb, Ab). In both of these we put F[(O) = O, Hi(O) = O, Ai(O) = 0 
(i = a, b) and put Ko = 1. For the first we include only the terms in K0 z in equations (7) 
with the corresponding values for H'(0)  and A~(0) as given by (7d), while for the latter we 
include only the terms in K0 in equations (7), with H~(0) = A~(0) = 0. We then construct 
three complementary functions ( Fc, He, Ae), ( Fa, Ha, Ad) and ( Fe, He, Ae) in which we take 
Uc'(O) = l, He(O) = O, Ae(O) = 0; F~'(0) = 0, Ha(O) = l, Aa(O) = 0; Fe"(0) = 0, 
He(O) = 0, Ae(O) = 1. The corresponding values of H~(0) and A~(0) (i = c, d, e) are then 
given by (7d) with Ko put to zero. The complete solution of the problem is then given by 

fz = ggFa + goFb + cFc + dFd + eFe ] 

02 = K~Ha + KoHb + cHc + dHd + erie 

a2 = K2oAa + KoAb + cAc + dAd + eAe 

(8a) 

for some constants c, d, e. 
From equations (7), we have, as y --+ cx~, 

F[ ~ - "~---~ + Bi, Hi --+ Ci, Ai --+ Di (8b) 
co 
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for i = a, b, c, d, e and where co = limy.c¢ re(Y). Thus to get a solution which satisfies all 
the outer boundary conditions, we must have 

cBc + dBe + eBe = -(K~)Ba + KoBb) 

cCc + dCd + eCe = -(K2oCa + KoCb) I " (8c) 

cD~ + dDd + eDe = - (K~D~ + KoDb) 

Since equations (7) have a complementary function which satisfies the appropriate homo- 
geneous boundary conditions, the matrix of coefficients in linear equations (8c) must be 
singular and these equations will then have a solution only if a compatibility condition is 
satisfied. This determines the value of the constant Ko via, after a little calculation, 

[(DeBb-  BeDb)(BdCe - BeCd) - (CeBb-  BeCb)(BdDe - DdBe)] 
14o = [(CeBa - BeCa)(BdDe -- ~ ~ a :  ~ e  - B---~]" (8d) 

Thus the solution at O (t - l )  is now fully determined. 
We now consider the terms of 0(5) in expansion (4). These are given by linear equations, 

a consideration of which suggests that we should look for a solution, valid for t large, by 
expanding 

Fl(y,t)  = t f l (y)  + f2(Y) + " "  

Hl(y , t )  = thl(y) +/t2(y) + " "  / " (9a) 

Al(y , t )  = tfq(y) + a2(y) + " "  

The functions (fl,  hi, gl) are given by the same linear homogeneous system as (fl,  hi, al) 
considered previously and have solution in terms of the eigenfunctions, 

fl  = Kl fe ,  hi = KlOe, al = Klae (9b) 

for some constant KI. 
When we consider the equations for the terms of O(1) in expansion (9a) we find that they 

are essentially the same as equations (7) with the factor K 2 replaced by 2KoKl, the factor 
K0 by - K I  and the boundary conditions at y = 0 becoming 

h ~ = - e x p  (1 0c [ ~  + )~!l)a 2 -~ 2A!l)KoKlaeOe 
+ e0c/  ac (1 + e0~) 2 

+)~!l)ac (1 + ¢0c) 2 + -(l'-~-6~c) '~ 

?~=o~exp ( , Oc + AO)a2 + 2A~,)KoKlaeO e • (10) 
+ ~0~1 ac (1 + ~0~) ~ k L 

+A(1)ac (1 + e0c) z + ~ :~'~-~cff 

To solve this system of equations numerically we use the complementary functions and 
particular integrals constructed previously and, in addition, we require a further particular 
integral (F:, HI,  A:) which is a solution of the homogeneous equations with 

FT(0 ) = 0, H:(O) = O, A:(O) = 0 
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and 

H i = - a c e x p  l+--e0c ' A~=aaeexp  l+eOc on y = 0 .  

The asymptotic behaviour of this particular integral is still given by (8b). The outer boundary 
conditions then require the solution of the linear equations 

cBe + dBd + eBe = -(2KoK1Ba - K1Bb + By) 

cCe + d C d + e C e =  - ( 2 K o K I C a -  K1Cb +CI)  i "  ( l la)  

cDc + dDd + eDe = -(2KoKIDa - K1Db + Dr) 

Since, as noted previously, the matrix of coefficients of linear equations (1 la) is singular, this 
system of equations will have a solution only if a compatibility condition is satisfied. This 
gives Kl and, after a little calculation and on using (8d) for Ko, we obtain 

1 [(BICe - CIBe)(BdDe - DdBe) - (BIDe - DIBe)(BdCe - CdBe)] 
KI = S L ( - - D ~ B b - ~ e Z  B-- ~ ~ _ - ~ - - ~ j  (lib) 

Thus we have, for t large, 

Oo(y,t) ~Oe(y) + ( K ° ' + S K l t ) O e  + "'" , 

a o ( y , t ) ~ a c ( y ) + ( K ° + s K l t ) a e +  ' ' '  

(12) 

with K0 and Kl known. From (12) we can see that this expansion becomes non-uniform when 
t is O(5 -1/2) and a further stage is then required for t on this time scale. 

(II) MIDDLE STAGE, t OF O(t~ -1/2) 

In this region we introduce the long time scale 

r = 51/2t, (13) 

with (12) then suggesting that we look for a solution in this region by expanding 

= A(v) + + +. . .  "l 
O(y,T) = Oc(y) + 51~2hi(y, 7-) + 5hE(y,r) + ' ' "  / " (14) 

a(y, T) = at(y) + 51/2gl (Y, 7) + 5g2(y, 7-) + ' "  

When (13) and (14) are substituted into equations (1), we find that the leading order terms 
are simply the steady state equations at the critical point and are thus satisfied automatically. 
At O (51/2) we obtain a system of homogeneous linear equations and boundary conditions for 
(¢1, hi, gl) (note that the time derivatives in the original equations (1) do not contribute at 
this stage). These equations have the solution 

(~1 = •l(T)fe, hi = ¢l(T)¢e, 91 = ~bl(r)ae, (15a) 
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where ¢1 (r) is an, as yet, undetermined function of 7, with, on matching with (12), 

Ko 
¢1(7) ,-, + K i t  + ' "  as r + O. (15b) T 
At 0(6) we obtain the equations 

cO302_.kh2q._fcC02~92 -t0~2 ,, (_~yl) 2 Oq2q~l 02q~l (16a) 
Oy 3 Oy 2 2 f c--~y + f c ¢2 : -- q)l "-~y 2 -'}- OyO-----~ ' 

Ohl 1 02h2 fcOh2 001 ¢ 1 - - ,  
-? ov - - - c  + -67 + ¢2< - 07 ov 

1 0292 -k A Off2 Ogl Ogl 
or-- ~ :c-b7 + ¢2a'~ = o---? - ¢1 o r  

These equations are subject to the usual boundary conditions and, on y = 0, 

0 h 2 -  e x p (  1 
) O c  h2 h2(1 - 2e - 2C20~) 

oy 4')a° + 

)~l)glhl ] 
+ (1 + gOc) 2 Jr- ,~l)o2 n t- ac 

Oy = c~ exp 1 + e0~ (1 + e0~) 2 + 2(1-7 ~c7 a 

A!l)glhl ] 
(1 + e0c)2 + ~)g2 + a~ 

We look for a solution of equations (16) in the form 

(16b) 

(16c) 

• ( 1 6 d )  

~2 ~" ~2('/')(1)2(Y), h2 = ¢2(T)H2(y), 92 = ¢2(T)G2(y). (17) 

When (15a) and (17) are substituted into equations (16) it results in non-homogeneous linear 
equations for ~2,//2 and G2 with right hand sides which involve terms in ¢2/¢2 and ¢~/¢2, 
with boundary conditions (16d) giving non-homogeneous terms in ¢12/¢2 and 1/¢2. When 
we examine these equations in more detail we find that the terms in ¢2/¢2 and ~b~/¢2 are 
essentially the same as the terms in K02 and K0 respectively in equations and boundary 
conditions (7) and the terms in 1/¢2 in the boundary conditions are essentially the same as 

the terms independent of A! 1) in (10). Thus to obtain a solution we again use the previously 
constructed complementary functions and particular integrals. The outer boundary conditions 
require the solution for the linear equations 

2 t 
cCc + dUd + eCe = - k~b2 a 1- ~92 b -'1- ~:2t..'f) • (18a) 

\w2 q,2 we / 
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Again the existence of a non-trivial solution to the related homogeneous problem means that 
the matrix of coefficients in linear equations (18a) is singular, and a solution is possible only 
if a compatability condition is satisfied. This gives, after some calculation, an equation for ~bl, 
namely 

d~)l = ¢2 + 3Kl.  (18b) 
dr  Ko 

Equation (18b) is to be solved subject to matching condition (15b). Noting that, as the steady 
state solution at critical point is approached from below as t --4 c~ in the inner region, Ko 
will be negative, the required solution is 

~bl = -~ /3Kl[K0[  cot(~/3K1/IKolr).  (19) 

The solution is still not complete, as (19) becomes singular at r = 7r(lKol/3K1) 1/2 and to 
advance the solution we introduce a new time variable t- given by 

(IKol~ l/25-1/e 
t = 7r \3-~1 ) + f" (20a) 

This leaves equations (1) essentially unchanged (except that the differentiation is now with 
respect to t rather than t). The solution starts with [from (14), (15a) and (19)], 

Im . I  
: ( v ,  to ~ :c(v) + + . . .  I (-t-) 

o(v, tO ~ oc(v) + IK ° l oe(v) +. . .  
(-tO 

a(v, t) ~ at(y) + [K-~°z[ ae(V) +""  (-t-) 

(20b) 

as t -+ - o e  and progresses on a t o f  O(1) time scale to the steady state solution on the upper 
branch as t- ~ 0¢. 

The behaviour of initial-value problem (1, 2) for values of A just above the critical value 

A~ l) is now clear. There is an initial period in which the solution leaves its cold initial state 
and approaches the steady state values at criticality on an O(1) time scale. There then follows 
a much longer period in which the solution very slowly passes the critical point, on a time 

scale of ((A - A~l))-l/2). Having got past the critical point the solution is then free to rise 
very rapidly to its steady state solution on the upper branch. This three-time stage structure 
can be clearly seen in the results shown in Fig. 1. 

As check on our theory, we calculated the times to ignition tign, from our numerical results. 
tign is not precisely defined and we decided to take tign to be that time at which the condition 
0(0, t) > 4 was first satisfied. Because the final rise to the upper branch is very rapid, other 
criteria for defining tign give essentially the same values (at least to within any numerical 

error). Now, since tig n O( ()~ -- /X(1)) -1/2 it follows that 

1 (21) 
) k -  ,X! 1) O( tign2 



Free convection stagnation point boundary layers 411 

0 . 1 9 -  

0 . 1 8 9 -  

0 . 1 8 8 -  

0 .187 -  

X 

0.186 - 

0 .185-  

0.184~ 

0.183 

o o o12 oi, olo 018 11o 12 
• 10 -I 

t ign ~ 

Fig. 2. Plots of A against t~, z for e = 0, a -- 0. l, tr = Sc = 1.0. Values calculated from the numerical solution 
are shown by II, the full line is the theoretical value. 

and consequently a plot of)~ against t~g 2 should give a straight line. Results are shown in Fig. 2 
(for the case e = 0.0, o~ = 0.1, cr = Sc = 1.0). The full line in Fig. 2 is the value obtained 
from the theory presented above for these values of parameters. From Fig. 2 we can see that 

the numerical results agree with the theoretical values as A -+ )~!l) which acts as confirmation 
of our theory. 

The question that remains is the nature of this finite time blowup when e = 0, c~ = 0 for 

general values of A > A~ 1). This is what we discuss next. 

3. T h e  f inite  t im e  b l o w u p  for  e = a = 0,  A > A~ l) 

Here we consider general values of A > ~,!l) and take E = 0, oL = 0, in which case a(y, t) -- 1 
and we need consider only equations (1 a, b) with boundary conditions (2a) becoming 

a0 
- Ae ° on y = 0. (22)  

OV 

Suppose that the blowup occurs at a finite value tB, which will depend upon )~. We put 

f = tB -- t (23) 

and look for a solution for f << 1. 
An examination of equations (la, b) and boundary conditions (22) suggests that we start 

by putting 

1 " H  

f = (F ,  0 = ~ l o g ( l / ( )  + H, r / =  (1°/2 . 

We consider equation (lb) first, which becomes on using (23, 24a), 

10ZH 1 OH 1 (OH 0~ 
ff 002 ~n On 2 -- Off -- f3 /2F ' 

(24a) 

(24b) 
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subject to the boundary condition 

__OH- Ae H on r / = O  
0~7 

(the outer boundary conditions have to be relaxed at this stage). 
Equation (24b) suggests looking for a solution by writing 

H(r/, () = Ho(r/) + (H1 (r/, (), 

where 

afo'7 2 [ ~ Ho = - ~ eaS /4 e -ax2/4 dx ds + bo, 
, ] 8  

where the constant bo is given by, from (24c), 

b0 = log \ ~ , ]  

and, as r/--+ oo, 

Ho ,,o - log r /+  b0 + . " .  

We now turn to the equation for F. This is, on using (24a, 25a), 

03F rlO2F + 1 OF _ ( 02F _ ( 3 / 2  f 02F (OF'~2) 

- ( ' / 2  (~  log(I/() + Ho + (HI)  . 

Equation (26a) suggests looking for a solution by putting 

F = aor/2 + (1/2 log(1/()(I)(r/, () 

for some constant a0 and then expanding (I) in the form 

1 
(I)(r/, if) = ~bo(r/) + log(1/~-----~ qbl(r/) + ' " .  

At leading order we obtain the equation 

q~g, r/~,, 1 
- ~ 0  + q~ = - ~ ,  (28a) 

T] 3 
gbo - 12" 

At the next order we obtain 

nt  r1 ,4 , ,  t 
~1 - ~ ' 1  + cb] = % - Ho,  

(28b) 

(29a) 

(24c) 

(25a) 

(25b) 

(25c) 

(25d) 

(26a) 

(26b) 

(27) 

which has solution satisfying q~o(O) = qS~)(O) = 0 and is not exponentially large as r/--+ ec 
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subject to 

¢1 (0) = ¢'1 (0) = 0. (29b) 

The solution of equation (29a) can be written formally as 

¢11 = _Q/2 _ 2) f0 Jr" Ho (x 2 - 2)e-Z2/4dxds. (30a) 

As 7/--+ oo, we have 

Cj ~ ~ ( 3 1 o g r l -  1) + b 0 -  7 ) + . - ' .  (30b) 

When we come to consider the term of O(log -2 4) in expansion (27b) we find that ¢2 
satisfies a purely homogeneous equation, with the same left hand side as equation (28a), and 
thus the series terminates at O ( l / l o g ( l / ( ) ) .  The next terms in the expansion of H and F 
are then both of 0(43/2). A further consideration of the equations for these terms of 0((3/2) 
shows that H and F are then O(rl) and O(rl 3) respectively for rl large. 

The solution given does not satisfy the outer boundary conditions and must be regarded 
as an inner solution. A further outer solution is required in which we leave all the variables 
unscaled. The solution in this region must satisfy the outer boundary conditions and match to 
the inner solution as y ~ 0 (or r / ~ oo in the inner variables). From (25d) and (30a) we find 
that, 

0 ~ - l o g y  + bo + 0(4)  ) 

y3 / ' (31a) 
f ~ aoy 2 + ]--~(3 log y -- 1) + O(ff) 

as y -+ O. (31 a) suggests that in the outer region we expand 

f = fo(y) + ~fl(Y) + ' "  ~ ,  
(315) 

f 0 = 0o(v) + + . . .  

with the solution in the outer region remaining regular as ¢ ~ 0. The leading order terms 
fo(Y) and Oo(y) are indeterminate, apart from being given by (31a) for y small and have 
f6 --~ 0, 0o -+ 0 as y -~ oo. The precise forms for fo(Y) and Oo(y) will depend on the values 
of A and how the solution develops from its initial state at t = 0. 

The nature of the singularity is now clear. There is a thin inner region in which the 
temperature has a logarithmic singularity though the velocity remains finite. There is also an 
outer region in which the flow is basically unaffected by the singularity in the temperature 
developing close to the surface. In more detail, from (24a, 26a) the skin friction remains finite 
with 

0Y2 ,] ~=o = ao + O(tB -- t) as t .-~ tB, (32a) 

where constant a0 cannot be determined from the asymptotic expansion. However, the wall 
temperature becomes unbounded, with, from (24a, 25c), 

O(O,t) ,,~ - 2  log(tB - t) + log \ - - ~ - ]  + . . .  as t -~ tB. (32b) 
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4. Conclusion 

We have shown that when the heat release parameter A is just above its critical value A! l) 
the solution develops a three-stage time structure. The wall temperature (for example) both 
approaches and leaves its critical value on a short O(1) time scale. However, the majority of 

the time is spent in moving slowly past the critical point, on the much longer ((A - A~ l) )-  I/2) 
time scale. 

For the special case of no fuel consumption (a = 0) and exponential approximation 

(e = 0) the solution develops a singularity at a finite time, tB, for all values of A > A! U 
in which the wall temperature is of O(log(1/tB -- t)) as t -+ tB though the fluid velocity 
remains finite. 
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Appendix 

The equations satisfied by the steady state ( f ( y ) ,  O(y),  a ( y ) )  are equations (1, 2) with the time 
derivatives put to zero. Suppose that 0(0) = 00, then the transformation 

f=Oo/4F, 0 = 0 0 ¢ ,  a = l - ( 1 - a o ) ¢ , r l = O o / 4 y ,  (A1) 

where ao = a(0), results in the standard free convection problem 

F m + ¢ + FF" - F t2 = 0, (A2) 

¢" + aF¢' = 0, (A3) 

¢" + ScF¢' = 0, (a4) 

subject to the boundary conditions 

F ( 0 ) = F ' ( 0 ) = 0 ,  ¢ ( 0 ) = 1 ,  ¢ ( 0 ) = 1 ,  F ' ( o o ) = ¢ ( o o ) = ¢ ( o o ) = 0 .  (A5) 

The solution of this problem then provides us with 

¢'(0) = -co(a) ,  ¢'(0) = -cl(a, Sc), (A6) 

where co and cl are both positive. Note that when Sc = a,  co = o.  
If we now apply A1 and A6 to boundary conditions (2a) we find that 

C0050/4 = )~aoexp(Oo/(1 + zoo)), 

el (1 _ ~,al/4 - uoJ~'o = a,~aoexp(0o/(1 + e0o)). 

(A7) 

(A8) 
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Combining A7 and A8 gives 

ao = 1 -- aOoCo/Cl. (A9) 

Then, when A9 is applied in A7, we obtain finally 

/:15/4 
v 0 

co 1 - aOoco/cl e x p ( - 0 0 / ( 1  + e00)). (A10) 

Equation (A10) is a relation connecting 00 - 0(0) and A and thus can be used to obtain all the 
bifurcation diagrams given in part I (plots of  0(0) against )~). 

Two features of  these bifurcation diagrams that were highlighted in part I were the limiting 
values of  0(0) on the upper solution branch and critical points (turning points on the bifurcation 
diagram). Both of  these features can be deduced directly from A10. Clearly 

Cl 
0 ( 0 ) - ~ - -  as A ~ .  ( A l l )  

c~CO 

Previously, only the special case Se = or, where 0 (0) --~ 1 / a ,  had been identified explicitly. 
By differentiating A10, it is straightforward to show that at criticality 

7e20o 3 + (2e7 - 47  - 5e2)002 + (7 + 4 - 10e)0o - 5 = 0, (A12) 

where "7 = c~co/O. Expression A12 is the same as that derived in [1] for the special case 
,-qc = a,  where 7 = c~. Thus the discussion given in [1] for this special case can be extended 
directly to the general case Sc ~ a.  
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